Salus: A Practical Trusted Execution Environment for
CPU-FPGA Heterogeneous Cloud Platforms

Yu Zou Yiran Li Sheng Wang’
zouyu.zou@alibaba-inc.com yiranli.lyr@alibaba-inc.com sh.wang@alibaba-inc.com
Alibaba Group Alibaba Group Alibaba Group
Le Su Zhen Gu Yanheng Lu
le.su@alibaba-inc.com guzhen.gz@alibaba-inc.com yanheng.lyh@alibaba-inc.com
Alibaba Group DAMO Academy, Alibaba Group DAMO Academy, Alibaba Group
Hupan Lab Hupan Lab
Yijin Guan Dimin Niu Mingyu Gao
yijin.gyj@alibaba-inc.com dimin.niu@alibaba-inc.com gaomy@tsinghua.edu.cn
DAMO Academy, Alibaba Group DAMO Academy, Alibaba Group Tsinghua University
Hupan Lab Hupan Lab Shanghai Al Laboratory
Shanghai Qi Zhi Institute
Yuan Xie Feifei Li
y.xie@alibaba-inc.com lifeifei@alibaba-inc.com
DAMO Academy, Alibaba Group Alibaba Group

Hupan Lab
Abstract

CPU-FPGA heterogeneous architectures have become in-
creasingly popular in cloud environments for accelerating
compute-intensive tasks. Ensuring the protection of sensitive
data processed by these architectures requires the presence of
a trusted execution environment (TEE). This work highlights
the requirements for designing an FPGA TEE, the challenges
faced in deploying existing solutions on commercial-off-the-
shelf (COTS) cloud FPGA services, and the limitations of
previous works that primarily focus on standalone FPGA
TEEs. In response to these challenges, Salus introduces an
innovative approach by leveraging an enclave running on
the host with a TEE-enabled CPU. This approach aims to
protect and attest the bitstream loaded on the FPGA side.
By repurposing COTS FPGA bitstream utilities in a novel
manner and adopting a proposed security-enhanced FPGA

*Sheng Wang is the corresponding author of this paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-0391-1/24/04
https://doi.org/10.1145/3622781.3674169

IP, Salus presents a practical design for an FPGA TEE, with
minor efforts required.

ACM Reference Format:

Yu Zou, Yiran Li, Sheng Wang, Le Su, Zhen Gu, Yanheng Lu, Yi-
jin Guan, Dimin Niu, Mingyu Gao, Yuan Xie, and Feifei Li. 2024.
Salus: A Practical Trusted Execution Environment for CPU-FPGA
Heterogeneous Cloud Platforms. In 29th ACM International Con-
ference on Architectural Support for Programming Languages and
Operating Systems, Volume 4 (ASPLOS °24), April 27-May 1, 2024,
La Jolla, CA, USA. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3622781.3674169

1 Introduction

In the cloud, a high volume of user data flows through shared
infrastructures maintained by cloud service providers (CSPs).
It is crucial to prioritize data privacy when constructing
these cloud infrastructures. Trusted execution environment
(TEE) offers a secure solution to prevent data breaches, by
providing a hardware-isolated environment for executing
programs, known as enclaves.

In addition to data privacy, computing efficiency is a signif-
icant focus in cloud computing. Prominent CSPs like AWS [1],
Azure [8], and Alibaba [10] offer FPGA-as-a-Service (FaaS),
enabling users to efficiently offload computing tasks to hard-
ware accelerators. FaaS partitions an FPGA device into a
shell and custom logic (CL). Users deploy their own accel-
erator logic onto the CL, while the CSP-maintained shell
functions as a privileged OS, responsible for CL deployment,
I/0 monitoring, and resource management. Beyond inher-
iting vulnerabilities from CPU standalone platforms, FaaS

https://doi.org/10.1145/3622781.3674169
https://doi.org/10.1145/3622781.3674169
https://doi.org/10.1145/3622781.3674169

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

introduces new vulnerabilities on the FPGA side caused by
the CSP-maintained privileged shell. Therefore it is crucial
to establish a TEE on the FPGA side.

The CL on the FPGA side encounters a similar attack sur-
face as a program executed on the host side. Firstly, the
privileged shell can potentially compromise the integrity of
the CL bitstream during the loading process. Secondly, the
shell has the ability to monitor CL’s I/O, compromising data
confidentiality and integrity. To address these concerns, an
FPGA TEE must meet two requirements: 1) the provision of
a root-of-trust (RoT) and an attestation mechanism enabling
the user on the host side to verify the integrity of the loaded
CL bitstream, and 2) an I/O protection mechanism ensur-
ing data confidentiality and integrity. While integrating I/O
encryption within the CL can guarantee I/O protection, ful-
filling the RoT and attestation requirement poses challenges.

Existing COTS FPGAs do not posses an on-board RoT
which is exclusively accessible to the attestation logic. With-
out a verifiable RoT to identify the message issuer, the CL
attestation is susceptible to confidentiality attacks and in-
tegrity attacks issued from the privileged shell. Previous
efforts to design FPGA TEEs either rely on additional secure
hardware as a RoT [22, 31, 42] or incorporate a hardcoded
secret, e.g. a PUF-generated challenge-response database,
bundled to a specific device as a RoT [40]. Consequently,
they are neither cost-efficient (cannot be applied to COTS
FPGA devices) nor compatible with current cloud FPGA us-
age (where a CL should be general enough to be deployed
on any cloud FPGA device). As a result, these approaches
cannot be directly implemented in current legacy FaaS.

We present Salus, an innovative FPGA TEE design that
prioritizes practicality and compatibility for easy implemen-
tation on COTS cloud FPGA devices. Our approach is based
on two key observations:

Observation 1: CPU TEEs are readily available in cur-
rent cloud infrastructure. Existing cloud platforms [5, 7]
are already equipped with CPU TEEs. Therefore, it is more
practical to utilize these pre-existing CPU TEEs rather than
relying on additional secure RoT hardware.

Observation 2: FPGA dynamic partial reconfigura-
tion overwrites all logic cells within the dynamic area,
leaving no unchanged logic cells. The partial bitstream
generated on existing FPGAs cover the configuration for
every cells within the dynamic area even though not used
by the custom logic [2].

Relying on the above two observations, we target a hetero-
geneous secure system consisting of a CPU TEE and an FPGA
TEE. Rather than relying on an extra RoT or hard-coded se-
crets, Salus utilizes a CPU enclave on the host side in an
inventive manner. Specifically, an IP developer develops a
CL containing a general attestation logic with a reserved
storage for the RoT during the development. During the
deployment, a verifiable RoT is dynamically generated and
injected inside the CL within a CPU enclave. As the RoT

Zou et al.

is securely generated within the enclave, the enclave could
cooperate with the attestation logic on the CL to guarantee
that a CL containing the correct RoT is loaded. During the CL
loading, we keep the CL bitstream confidential to the shell,
such that a malicious attacker could not reverse engineer a
plaintext CL bitstream, replace the CL while leaving the RoT
unchanged to fake a valid CL attestation. Since the second
observation ensures that the CL is always programmed as
an entirety, the integrity of the RoT further indicates the
integrity of the entire CL.

To fulfill the goal, Salus faces three technical challenges:

Challenge 1: Fast and secure dynamic injection of a
RoT inside the bitstream. The injected RoT must be confi-
dential to prevent the privileged shell’s snooping attacks. A
naive approach would require the IP developer open-sources
the accelerator code to the IP user and the latter dynamically
hard-codes a RoT by changing the source code, and generates
a new bitstream inside the host enclave during the deploy-
ment phase. However, this approach is time-consuming due
to placement and routing, resulting in unacceptable deploy-
ment delays. In addition, requiring the IP developer open-
source the IP to the IP user is not compatible with the cloud
usage, where the IP developer and the IP user might belong
to different entities.

Solution 1: Innovative usage of bitstream manipu-
lation and encryption. Salus utilizes existing bitstream
manipulation and encryption techniques in a novel way.
During the booting process, the host enclave uses bitstream
manipulation to inject a random secret into the CL bitstream.
The bitstream manipulation operates a bitstream directly on
the bitstream level. The bitstream is then encrypted within
the enclave and loaded by the shell. The FPGA’s internal
decryption mechanism ensures that the shell cannot steal
the embedded secret during bitstream loading. Utilizing the
bitstream manipulation and encryption, the RoT injection
does not need to go through the time-consuming placement
and routing, and the RoT can be dynamically generated and
embedded during the deployment phase. By further disabling
FPGA’s internal readback capability, the embedded secret is
fully isolated from the shell during runtime. Salus is able to
utilize these techniques since they are either already avail-
able in modern FPGAs (e.g., bitstream encryption and manip-
ulation) or feasible with FPGA vendors’ involvement (e.g.,
releasing a new bitstream loading RTL IP with readback
disabled), enabling their implementation on COTS FPGA
devices. In addition, eliminating the need of source code
open-sourcing, Salus is compatible with the cloud usage.

Challenge 2: Attestation of custom logic. The host en-
clave cooperates with the attestation logic integrated on the
CL to authenticate the embedded RoT to ensure that the RoT
and attestation logic have not been tampered with, guaran-
teeing the secure loading of the bundled CL bitstream. As all
the transactions between the host and the attestation logic
are carried by a malicious shell, an light-weight attestation

Salus: A Practical TEE for CPU-FPGA Heterogeneous Cloud Platforms

mechanism resistant to typical bus attacks, e.g., confiden-
tiality and integrity attacks, is desired. ShEF [42] proposes a
CL attestation framework analogous to CPU TEE’s remote
attestation. The public-key encryption (PKE) based remote
attestation requires a public key infrastructure, which highly
complicates the system design. Additionally, ShEF requires
each CL developer to work as a certificate authority (CA)
to verify the bitstream, resulting in the developer’s involve-
ment in the cloud deployment phase. Therefore, a simple
and light-weight CL attestation mechanism is desired.
Solution 2: Light-weight custom logic attestation. Salus
utilizes the host enclave to attest the CL. As the host enclave
can be remotely attested and trusted, it is only required to
verify the CL from the enclave. Utilizing the trusted host
enclave, Salus proposes a new CL attestation mechanism
analogous to the local attestation used in CPU TEEs. Un-
like the remote attestation, the CPU TEE’s local attestation
utilizes symmetric key based verification, which is highly
compatible with the proposed RoT injection. By injecting
the RoT within the host enclave, the injected RoT is secure
and can be utilized directly as a symmetric key, thereby sim-
plifying the attestation process and eliminating the need for
an additional CA and another PKE round, as in the case of
ShEF. Salus utilizes a light-weight message authentication
code to securely attest the CL over an unsecure channel.
Challenge 3: Authentication of multiple heterogeneous
components in the system. A secure heterogeneous sys-
tem consists of multiple components, including both host
enclaves and CL. Private data must flow through the sys-
tem only when all the components are trusted. Therefore,
when a cloud customer receives an attestation report before
uploading sensitive data, this report must assure that all
components have undergone attestation. Prior attestation
protocols for heterogeneous systems, e.g., the multi-stage
attestation used in SGX-FPGA [40], only generate an attesta-
tion report covering the security of a subset of components.
Consequently, upon receipt of the report, the cloud customer
cannot immediately proceed with uploading sensitive data as
the verification process for all components is yet to be com-
pleted. To the best of our knowledge, no secure attestation
protocol has been proposed that provides a report containing
a security proof for all heterogeneous components.
Solution 3: Cascaded attestation. To ensure secure au-
thentication of all components in a heterogeneous system,
Salus proposes a cascaded attestation protocol. This protocol
chains and cascades the authentication process from the user
enclave on the host to the CL on the FPGA. This allows the
entire system to be remotely attested by the cloud customer
in a single round-trip.
In summary, we make following contributions:

e We introduce Salus as the first cost-efficient TEE for
a CPU-FPGA heterogeneous system, which could be
directly applied to existing FaaS platforms.

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

Enclave A Enclave B
EGETREY | 1. Challenge
(MRENCLAVE) |
EREPORT EREPORT
I — Metadata 2. Response Metadata
Report Key T (REPORT)
\ MAC [
AES-CMAC AES-CMAC
EGETKEY [}
[ReportKey

Figure 1. Local attestation protocol of Intel SGX.

e We explore the repurposed usage of existing FPGA
bitstream utilities to securely embed a RoT into a CL
bitstream guaranteeing confidentiality and integrity
of the CL loaded by a potentially malicious shell.

e We propose a light-weight CL attestation protocol al-
lowing for authenticating a loaded CL over a channel
vulnerable to shell’s attacks, without the need of com-
plex PKE.

e We design a novel cascaded attestation protocol al-
lowing for generating an attestation report containing
security proofs for all heterogeneous infrastructure
components for the cloud customer to verify.

e We implement a prototype on a CPU-FPGA platform
and evaluate using five real-world benchmarks. The
secure booting time for an FPGA TEE is measured to
be 18.1 seconds, which is reasonable compared to the
overall booting time of a cloud VM instance. Addition-
ally, Salus demonstrates significant speedup (up to 15.6
times) compared to running within a CPU enclave in
real-world applications.

2 Background
2.1 Trusted Execution Environment

A TEE like Intel SGX in general consists of three functionali-
ties: a root-of-trust (RoT), execution isolation, and remote
attestation. The TEE uses a manufacturer-injected key as a
RoT. An enclave program is loaded into a hardware-enforced
isolated memory region. The TEE generates a proof for a
verifier to examine the authenticity of an enclave, which is
called remote attestation (RA). A successful RA gives the
verifier an attestation report, e.g., a Data Center Attestation
Primitive (DCAP) quote for Intel SGX, indicating that the
enclave runs on a fully patched TEE platform and therefore
the verifier can pass secrets to the enclave.

In addition to RA, TEE implementations also provide a lo-
cal attestation mechanism proving that two enclaves run on
the same platform. As shown in Figure 1, two hardware in-
structions, EGETKEY and EREPORT, are used in the local attes-
tation [19]. EGETKEY guarantees that only a trusted enclave
could get a symmetric report key, and EREPORT generates

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

a report signed by the report key. Following a challenge-
response roundtrip, the verifier enclave compares the locally
generated attestation report with that of the prover enclave.
A successful verification guarantees that the prover enclave
has access to the report key and consequently runs on the
same platform as the verifier enclave.

Typical CPU TEEs, e.g., Intel SGX, only provide a static
attestation, that is the attestation only verifies the static envi-
ronment of an enclave, while not providing defense to attacks
aiming to modify the program runtime behavior. Similarly,
Salus only focuses on protecting integrity of the CL during
bitstream loading, ignoring runtime attacks, e.g., runtime bit-
stream replacement. Runtime attestation like those proposed
for CPU TEEs [26, 30, 38] will be studied later.

2.2 FPGA-as-a-Service

FaaS utilizes dynamic partial reconfiguration to split a device
into a static partition, running a CSP-maintained shell, and
a reconfiguration partition (RP), loaded by various custom
logics (CLs). The shell is responsible for programming an RP
with a CL bitstream and abstracting away complex control
logic of external devices, such as DRAM and PCle, acting
as an OS. The shell uses a special on-board IP to interface
with the FPGA configuration memory, referred as Internal
Configuration Access Port (ICAP) for Xilinx FPGAs. During
development, IP vendors uses CSP-licensed hardware devel-
opment kit (HDK) and software development kit (SDK) to
design accelerators and generates partial bitstreams and host
program binaries. During a cloud instance creation, the CSP
deploys a privileged OS and other programs on the host, and
loads the shell into the FPGA. Following the creation, the
instance customer deploys the data processing program on
the host, and transfers the CL bitstream to the shell, later
loaded into the FPGA. After the deployment, the customer
uploads data to the cloud for heterogeneous processing.

2.3 Bitstream Encryption And Manipulation

Bitstream encryption. Existing FPGA devices support bit-
stream encryption and an AES decryption key can be stored
internally in either a battery-backed on-chip RAM (BBRAM)
or an eFUSE. During development, the developer generates
a key and encrypts the bitstream. During deployment, the IP
user fuses the key to the FPGA via a JTAG interface and loads
the encrypted bitstream. The bitstream decryption occurs
internally within the FPGA fabric and remains inaccessible
to FPGA users, guaranteeing the bitstream’s confidentiality.
Unlike the FPGA logic programmed by any FPGA user, the
FPGA fabric is released only by the manufacturer thus the
internal decryption is considered trusted according to the
threat model in Section 3. Note that the bitstream encryption
is compatible with partial reconfiguration allowing a shell to
load an encrypted bitstream. However, this encryption fea-
ture is originally designed for on-premise usage, where the
IP developer and IP user belong to the same entity, and not

Zou et al.

suitable for a secure cloud environment Firstly, in a shared
resource like a cloud FPGA, exclusive loading of a key im-
pedes resource multiplexing. Secondly, the IP user and IP
developer may be different entities, making the traditional
bitstream encryption usage tightly couple the IP deployment
phase (scheduled by the user) and the development phase
(scheduled by the developer) to transfer an encryption key.
Lastly, leaking an encryption key to a compromised IP user
would negatively affect the benefit of the IP developer.

Bitstream manipulation. A bitstream is a sequence of
initial values for configuration memory cells, such as reg-
isters and BRAMs. Bitstream manipulation takes a readily
available FPGA bitstream and the hierarchical location of a
specific cell in the generated netlist as inputs, and updates
with a user-defined initialization value without the need to
modify the RTL code. The bitstream manipulation capability
is provided in both academic tools e.g., byteman [28] and
industrial products, e.g., RapidWright [27].

3 Threat Model And Motivation
3.1 Threat Model

Hardware
Manufacturer
Cloud Service
Not Tr “ts.f‘“ Provider
Not Trusts
Developer

Infra.

Operate

X el N Curious Admin
!«—»C"““ [Enclave_o7] o C"”<:-
' Enclave o [Host App.
Network o '_E_ - :/ _________ lfp_ w/ TEE Attacker

Snooping
tPCIe f(:: @
__________________ Malicious Shell
h e 1 FPGA
' [Custom Logic o] Shell ' Pabric <::|

Figure 2. Threat model of secure FaaS.

As shown in Figure 2, Salus targets a cloud CPU-FPGA
heterogeneous platform consisting of a host and a shell-
managed FPGA. The target cloud usage considers four par-
ties: data owner (also cloud user), developer, CSP, and hard-
ware manufacturer. For simplicity, we do not distinguish
between the host side and the FPGA side in this work. The
goal of a secure FaaS$ is to provide a secure cloud platform
such that a developer’s program can be faithfully deployed
on the platform and the data owner can attest the platform’s
state, upload sensitive data, and start executing the program.

The CSP hosts a host system enhanced by the CPU TEE
and an FPGA enhanced by our proposed FPGA TEE. More
details of the FPGA TEE will be provided in Section 4. The
goal of this heterogeneous architecture is to prevent attacks
issued from privileged adversaries, e.g., CSP administrators.
Typical attacks protected by Salus include:

Salus: A Practical TEE for CPU-FPGA Heterogeneous Cloud Platforms

1. Integrity attacks on CL during booting. A shell con-
trolled by an adversary loads a malicious CL to steal
the data owner’s sensitive data.

2. Confidentiality and integrity attacks on CL during run-
time. An adversary tampers with the device memory
to steal user data or change control flow.

3. Bus attacks on host-CL PCle transactions. Both attes-
tation transactions over PCle and runtime data trans-
actions over PCle suffer from the attacks.

4. Privileged attacks on the host trying to steal data or
affect control flow of programs running on the host.

In this work, we assume all programs running inside the
CPU TEE are tamper resistant to privileged attacks. We also
delegate the task of data encryption and decryption to the
developer who should implement corresponding modules
in the CL to protect against device memory attacks. There
are many research efforts targeting to provide efficient and
flexible memory integrity and confidentiality protection [33,
34, 42, 45, 46]. As such, Salus only focuses on the secure
loading of a CL and how to establish an encrypted channel
between an enclave program running inside the host TEE
and a CL running inside the FPGA TEE for trusted attestation
and data transaction.

As mentioned in Section 2.2, the shell uses ICAP to inter-
nally interface with the FPGA configuration memory. This
results in an attack surface that the shell could snoop a loaded
CL by internally scanning the configuration memory. Con-
sequently, any secrets hardcoded inside an RTL source code
can be read back by the shell in plaintext. Salus assumes
the ICAP readback capability disabled such that the shell
could only load but not scan the CL. In Section 5.1.2, we’ll
argue that this is a feasible assumption with the FPGA ven-
dors’ involvement. Existing works also have similar implicit
assumptions [22, 31, 40, 42].

Similar to the CPU TEE, we assume the hardware manu-
facturer is trusted by the data owner and we assume there is
no backdoor logic injected during the device manufacturing
process. Moreover, as for Intel SGX, we assume the man-
ufacturer is trusted such that it could faithfully work as a
verification authority. Secrets, e.g., symmetric device keys
used in bitstream encryption, are assumed securely stored
in a trusted key management service by the manufacturer.

The developer is responsible for generating a host enclave
program binary and a CL partial bitstream. We assume the
program and the bitstream are developed under a secure
environment and the implementation itself is trusted.

Throughout the work, side-channel attacks on either the
CPU or the FPGA are not considered and Salus is compati-
ble with other advanced mitigation measurements [21, 32].
Denial-of-Service (DoS) attacks are not considered, as the
CSP is assumed to have a strong incentive to prevent DoS
attacks to avoid business losses.

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

Table 1. Comparison with Existing FPGA TEE Works

No Extra | Independent
Work TEE Type Hardware | Dev. & Dep.!
SGX-FPGA [40] HE? v/ X
ShEF [42] SA3 X v/
MeetGo [31] SA3 X v
Ambassy [22] SA3 X v
Salus HE? v 4

! Independent IP development phase and deployment phase.
2 HE: Heterogeneous CPU-FPGA TEE.
3 SA: Standalone FPGA TEE.

3.2 Motivation

To build a RoT on the FPGA side to be used to attest the
loaded CL bitstream, previous works, focusing to build a
standalone FPGA TEE independent of the host, have typi-
cally required additional hardware to assist in the attestation
process as shown in Table 1. ShEF [42] and Ambassy [22]
rely an ARM processor and assume that a unique private
key injected during the manufacturing process is hardcoded
into each BootROM. MeetGo [31] proposes a new FPGA pro-
gramming unit exposing a pre-injected private key to the CL.
Therefore, these works cannot be directly applied to COTS
FPGA devices. Similar to Salus, SGX-FPGA [40] also targets
a CPU-FPGA heterogeneous system instead of standalone
FPGA TEEs and it uses a physically unclonable function
(PUF) challenge-response pair (CRP) database to use as a
RoT. However, since the PUF is unique per device, the de-
veloper needs to operate on the FPGA board that the user
intends to use to pre-generate a CRP database specific to the
cloud instance. This contradicts typical cloud usage where
IP development is independent of instance deployment.

Salus, on the other hand, takes a different approach by
utilizing a host enclave to assist in CL booting and attes-
tation. It innovatively repurposes bitstream manipulation
and encryption to dynamically inject unique RoT into the
CL per deployment eliminating the need for extra hardware.
Moreover, the RoT injection approach decouples the devel-
opment phase and the deployment phase, as the developer
only needs to integrate a general CL attestation logic.

4 System Design

In this section, we present the system design. We provide
an overview in Section 4.1. Then, we delve into RoT injec-
tion, CL attestation, and cascaded attestation, covered in
Section 4.2, Section 4.3, and Section 4.4, respectively. We
further explain the interface for the user application in Sec-
tion 4.5. Section 4.6 gives security analysis. It is important
to note that we use Xilinx FPGA and Intel SGX as examples
and adopt their terminologies, but Salus is not device-bound
and compatible with other FPGA and TEE implementations.

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

Device DNA™ Device Key

Zou et al.

Protected by Device Key —#- Protected by Attest Key

A58275817 | 6ac05196 | <

Attestation
Service A58293108 [« 29f5087d

1 Added in Salus

:___: Untrusted Module

Hardware Manufacturer g @)

/ \D Trusted Module
]

CSP-Provided Platform
FPGA Logic

Host CPU w/ TEE FPGA Fabric
7" User Application” 1 SM Application| S +©— | RReeptor | [<FUSE [& Device Koy ||
! | i \ h ,
Data Owner] User Enclave ' ! SM Enclave ¥ ' ' ' ¥
2 L [—3)# | o Device Ke . Shell o\
4 VI N @rusted Sotware)|[l g YO Do | XM T
- f—®—. o Attest Key - { —(o Attest Key (Trusted Logic)
" (N
Developer —(e — [e iy ' e hl
i Host Memory 4 i FPGA Memory | Encrypted Data 1

User Enclave | CL | I e e mccmmcmmmcmmmmmmmoa oo

Figure 3. Secure RoT injection and CL booting flow of Salus.

4.1 System Overview

Salus utilizes bitstream manipulation and encryption to in-
ject aRoT to the CL bitstream. As discussed in Section 2.3, the
original bitstream encryption is not suitable for cloud usage.
Salus repurposes the bitstream encryption scheme by involv-
ing a separate portable enclave application, in addition to the
user enclave, responsible for bitstream encryption, which is
developed by a trusted third-party. This third-party injects
a secret key into each cloud FPGA device and maintains a
key distribution service. The third-party securely issues the
corresponding key for the FPGA device. While any trusted
third-party could fulfill this role, in this work, Salus assigns
this responsibility to the hardware manufacturer for simplic-
ity. Additional CL secure booting related functionalities, like
bitstream manipulation and attestation, are also offloaded to
the enclave. Traditional CPU TEEs also assign similar respon-
sibilities to the hardware manufacture, e.g., Intel Attestation
Service [4]. Existing FPGA vendors already offer similar key
distribution services [9], thus providing the desired service
is not burdensome for the manufacturer.

In general, in addition to the user enclave application and
user accelerator, Salus adds extra three components: secure
manager (SM) enclave application running on the host side
alongside the user enclave, secure manager (SM) logic run-
ning within the CL alongside the accelerator logic, and a
key distribution service maintained by the manufacturer as
shown in Figure 3. The SM logic and accelerator are inte-
grated during development, generating a single CL bitstream
containing both logics. The SM application and logic are
responsible for manipulating, encrypting, and attesting CL.
They are expected to be released by the manufacturer as a
software development kit (SDK) and a hardware develop-
ment kit (HDK), respectively. Design details of the SM appli-
cation and logic will be discussed in Section 5. Both SM appli-
cation and SM logic solely utilize well-known cryptographic
functionalities like AES encryption, SHA, and HMAC. They
do not contain hardcoded secrets, ensuring a compact and
easily inspectable codebase for secure implementation. It is

easier for these HDK/SDK to be open-sourced and the devel-
opers verify before integrating into their own designs. Both
SM enclave and logic are versatile, requiring development
only once and suitable for all platforms.

4.2 Dynamic RoT Injection And Secure CL Booting

Salus innovatively relies on bitstream manipulation and en-
cryption to inject a RoT to the CL bitstream. However, the
RoT needs to be injected to the CL bitstream securely such
that only the SM enclave and the correct CL has access.
Specifically, a CL booting flow with a secure RoT injection
needs to guarantee the following: 1) A correct and user-
expected bitstream is operated; 2) The encryption key asso-
ciated to the FPGA device is not leaked to attackers; 3) The
bitstream is securely manipulated and encrypted; and 4) The
plaintext bitstream containing the injected RoT is not leaked.

To fulfill the goal, we design a secure CL booting flow to
guarantee that before the CL is deployed on the FPGA, a
dynamic RoT is securely embedded into the bitstream. The
RoT is not leaked to any privileged component such as OS
and shell. In general, in addition to the normal CL booting
flow, we add four extra procedures: 1) Alongside the user en-
clave, the SM enclave is booted together; 2) The user enclave
locally attests the SM enclave to establish a secure channel
and the digest of target bitstream is securely issued to the
SM enclave; 3) The key server remotely attests the SM en-
clave before issuing the encryption key; and 4) The expected
bitstream is verified by comparing the digest, manipulated
by injecting a random RoT, and encrypted within the SM
enclave, isolated from any privileged attacks. The injected
RoT is subsequently employed for CL attestation, which will
be discussed in detail in Section 4.3.

As such, as shown in Figure 3 a new booting flow with
RoT injection included consisting of three phases, device
manufacturing, application development, and cloud instance
deployment is designed.

Device manufacturing. A random symmetric device key,
KeYgevice, is injected into every manufactured FPGA during

Salus: A Practical TEE for CPU-FPGA Heterogeneous Cloud Platforms

Custom Logic

SM App. .
(Key, pp) w/ SM Logic
ttest
‘|1 o (KeYattest)
¢ Generate Random Nonce N :
_ N, MAC,
* MACreq = MACKEYuttest(N’DNA) (rEq>‘ I . MAC'req =
MA CKEy’aztesz (N, DNA')

« MAC =
MACyqy

A

« MAC'ygp = MACysp :
MACxey (N + 1,DNA) |
I
|
I

attest

 Compare MAC;s, and MAC',,

(a) Custom logic attestation.

* Compare MACy.q and MAC',q

(N +1,DNA")

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

Custom Logic

User Client User App. SM App. w/ SM Logic
! RA Request ! | |
> LA Initial ! |
............ Srarrranans I
LAFinal ! !
Report(SMApp) . o
Deferred RA | CL Auth. Req= '
Report Generation | AR B L-l
CL Auth. Rsp. :
< |
CL Auth. Result, |
Report(CL) |
|
|
|

: I
| RA Response | |
IRepart(UserApp, SMApp, CL)I I

(b) Cascaded attestation.

Figure 4. (a) CL attestation protocol. (b) Cascaded attestation of heterogeneous components.

the manufacturing process. The manufacturer also maintains
a key distribution server for device-key pairs.

Heterogeneous application development. Salus fol-
lows a development flow similar to conventional heteroge-
neous applications. The developer acquires the development
kit from the CSP and develops the user enclave application
and the CL in a secure local environment. During the de-
velopment phase, the CL developer integrates the publicly
verified SM logic and generates a CL bitstream containing
both the accelerator and the SM logic. The SM logic reserves
a storage for the RoT, namely Key,;ses;- To manipulate the
bitstream the developer records the hierarchical location of
the RoT, Locgey,,,..,» Within the generated CL netlist and
stores it alongside the bitstream. After generation, the de-
veloper calculates a digest H of the bitstream and metadata.
Thanks to the flexibility provided by the bitstream manipula-
tion tool as mentioned in Section 2.3, Salus does not require
the hierarchical location of RoT, Lockkey,,,..,, to be fixed
in a final compiled CL netlist. Consequently, the SM logic
functionality can be released as a development kit and freely
integrated with the accelerator logic by developers.

Cloud instance deployment. When the data owner in-
tends to deploy a cloud instance, the user enclave applica-
tion and the SM enclave application are deployed on the
TEE-enabled host (D). The data owner initiates a remote
attestation to verify the booted user application (). Along
with the remote attestation request, the user client transfers
the metadata of the expected bitstream, Locgey,,,.., and H, to
the user enclave. The user enclave initiates a local attestation
request to verify the SM enclave and forwards Lockey,,,..,
and H using a negotiated symmetric key (3). The SM enclave
then requests the manufacturer for Keyg.yice associated with
ID of the rented FPGA, Device DN A, provided by the CSP (@
). Upon receiving a key request, the manufacturer server ini-
tiates a remote attestation request to the SM enclave before
distributing Keygeyice- Through this process, the SM enclave
is trusted and Keygeqice is securely issued. The SM enclave

fetches the CL partial bitstream, verifies its integrity by com-
paring H, generates a random attestation key Key;sess, and
injects into Lockey,,,.,,- The manipulated bitstream is then
encrypted with Keygeice and sent to the shell (). All the
above operations are happened within the enclave such that
the manipulated plaintext bitstream is not leaked. The CSP-
maintained shell forwards the encrypted bitstream to the
FPGA fabric. Inside the FPGA internal fabric, the decryp-
tion logic decrypts the bitstream and writes it to the FPGA
configuration memory to load CL on the dynamic area(®).
The decryption process is inaccessible to any programmable
logic and is trusted as mentioned in Section 2.3. Once the
CL is loaded, the SM enclave issues an attestation request to
verify integrity of the CL ((2)). The user enclave generates
a remote attestation report and sends it to the data owner
(®). Details of the CL attestation ((7)) and the user enclave
remote attestation report generation (®) will be discussed
in Section 4.3 and Section 4.4.

4.3 Custom Logic Attestation

CL attestation is to prove that both the CL and the SM en-
clave posses the same secret which is dynamically injected
during the booting. ShEF [42] proposes a remote attestation
analogous to the traditional remote attestation used in In-
tel SGX. The remote attestation is based on PKE which is
compute-intensive and it requires a public-key infrastruc-
ture, e.g., CA. In addition, the attestation is less efficient since
requiring the network to authenticate certificates.

We claim that remote attestation is unnecessary under the
usage of RoT injection proposed in Section 4.2. The secure
CL booting flow guarantees that the attestation key is se-
curely generated inside the SM enclave, and only a correctly
loaded CL bitstream contains the key. Hence, compared to
the PKE based remote attestation, we design an attestation
mechanism similar to Intel SGX local attestation, relying on
a symmetric key, as shown in Section 1. Similar to the SGX
local attestation, the proposed CL attestation is carried over

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

Zou et al.

Table 2. Analogy Between Salus CL Attestation And Intel SGX Local Attestation

l Intel SGX Local Attestation

[Salus CL Attestation

Verifier enclave generates a challenge MRENCLAVE.

SM enclave generates a challenge N.

Prover enclave gets report key.

SM logic gets attestation key.

Prover enclave generates a MAC over MRENCLAVE.

SM logic generates a MAC over N + 1.

Prover enclave sends report containing MAC to verifier enclave.

SM logic sends report containing MAC to SM enclave.

Verifier enclave fetches local report key.

SM enclave fetches locally generated attestation key.

Verifier enclave verifies MAC with report key and MRENCLAVE.

SM enclave verifies MAC with attestation key and N + 1.

a unsecure channel, and it is resistant to all confidentiality
attacks, integrity attacks, and freshness attacks.

A successful attestation verifies two facts: 1) Keygrrest
used in the SM logic is authenticated; and 2) The SM logic
itself is authenticated. Failure of either fact results in the
failure of Keyg;ses: attestation. FPGA partial reconfiguration
completely overwrites the reconfigurable partition, prevent-
ing attackers from partially modifying the accelerator logic
while leaving the SM logic untouched to create a legitimate
bitstream. Therefore, a successful Keyy;ss; attestation indi-
cates a successful authentication of the entire CL.

The detailed CL attestation protocol is described in in Fig-
ure 4a. The analogy between the CL attestation and the Intel
SGX local attestation is shown in Table 2. After loading a CL,
the SM enclave generates a random nonce N and computes a
MAC MAC;q over both N and Device DNA. MAC, 4 ensures
integrity of the attestation request. Upon receiving a request,
the SM logic on the FPGA side uses the local Key/,,,.; and
DevcieDNA’ to verify the MAC. Checking DeviceDNA en-
sures that the FPGA ID assigned by the CSP matches the
one used by the user-rented FPGA, confirming correctness
of the FPGA. The SM logic generates an attestation response
by calculating a function over the nonce and calculating a
MAC, MAC,s,, which is then verified by the SM enclave. As
the security strength of MAC relies on the key independent
of the message, for simplicity, we choose an incremental
operation as the function. For security concern, the function
can also apply more complicated routines, such as hashing.

4.4 Cascaded Attestation

4.4.1 Cascaded Attestation. To ensure proper attestation
of a cloud FPGA instance, all heterogeneous components
must go through attestation. SGX-FPGA [40] sequentially
attests the user application, the SM application, and finally
the CL. The cloud customer only interacts with the user
application and receives the attestation report for the user
enclave. The CL attestation result is not forwarded to the
user end. This renders the attestation report useless in that
even if the data owner receives the report, the platform is
still not trusted as the CL is not attested yet at the time of
receiving the report.

To address this, we propose a new attestation scheme
named cascaded attestation. The cascaded attestation defers

the user enclave’s remote attestation report generation until
the CL attestation is completed. As shown in Figure 4b, the
user client initiates a remote attestation request to the user
enclave, triggering a local attestation request from the user
enclave to verify integrity of the SM enclave. The SM enclave
generates a local attestation report and initiates the CL attes-
tation. Once the CL attestation is completed, the SM enclave
generates a message conveying the CL attestation result to
the user enclave. The user enclave then generates a remote
attestation report containing both CL and SM enclave verifi-
cation information and responds to the user client. Within
the cascaded attestation, the attestation report of each stage
contains attestation results of all the backward stages, such
that the attestation results of all heterogeneous components
are chained together. Tampering with any stage will cause
the final report sent to the user end invalid. Consequently,
as soon as the data owner receives the attestation report, the
data owner could immediately upload sensitive data as all
the components are trusted.

4.4.2 Security Evaluation. Firstly the security of the user
enclave is identified since it is remotely attested at the end
of the cascaded attestation. Knowing the user enclave will
be verified in the end, the successful local attestation be-
tween the two enclaves indicates the integrity of the SM
enclave. Similarly, the authenticated SM enclave indicates
the authentication of the CL. In summary, the local attesta-
tion and CL attestation bundle the user enclave, SM enclave,
and CL together, enabling a single remote attestation from
the user client to attest the entire heterogeneous platform.
The cascaded attestation achieves the same level of security
as the remote attestation of the standalone CPU TEE.

4.5 User Enclave Interface

To utilize this heterogeneous architecture, a secure channel is
needed between the host and FPGA. Salus provides a secure
channel for register transactions between the SM enclave and
SM logic, utilizing two secrets, session key Keysession and
session counter Ctrgegsion, additionally injected alongside the
attestation key during bitstream manipulation. For a register
transaction, the user enclave first transfers a register trans-
action to the SM enclave via a local attestation established
secure channel. The SM enclave forwards the transaction to
the SM logic through a channel protected by Keysession and

Salus: A Practical TEE for CPU-FPGA Heterogeneous Cloud Platforms

Ctrsession- The SM logic transparently decrypts, verifies, and
forwards the register transaction to the accelerator. Salus
also establishes a direct but unsecure connection between
the user enclave and the accelerator bypassing the SM en-
clave and SM logic. It is the developer’s responsibility to
decide how to use the two interfaces, e.g., a symmetric data
key is exchanged over the secure register interface while
subsequent encrypted memory transactions are carried over
the direct unsecure interface.

4.6 Security Analysis

As recommended by Kerckhoff’s doctrine [25], a secure sys-
tem should rely only on secret keys while all the routines
could be publicly known to attackers. Salus does not rely
on any black-box implementation as the attestation key is
dynamically generated and injected per deployment while
all other components can be open-sourced. As mentioned
in Section 3.1, Salus mainly focuses on two attack types, i.e.,
integrity attacks on CL during booting and bus attacks on
host-PCle transactions, including both CL attestation trans-
actions and runtime user data transactions.

As Table 3 shows, steps (D-(© guarantee the integrity
of the CL during the loading process. Specifically, remote
attestation and local attestation of the user enclave and the
SM enclave ((D,®,®) guarantee the bitstream metadata
and digest are securely transferred from the user client to
the SM enclave. Remote attestation of the SM enclave ()
guarantees that the device key is securely issued to the SM
enclave ensuring the confidentiality and integrity. Bitstream
verification using the digest within the SM enclave (@)
verifies the integrity of the target CL bitstream. Bitstream
manipulation and encryption within the SM enclave (@)
and the CL loading ((®,(®) guarantee confidentiality of
the injected attestation key. The above process guarantees
that a verifier-only-known secret, Keyg;est, is confidentially
embedded into the target CL bitstream without leaking the
secret to the shell. Any integrity attack will lose the secret
and consequently fail the following symmetric key based
integrity verification.

As only the SM enclave and the target CL have access
to attestation key which is randomly generated per deploy-
ment, the two components establish a secure attestation
channel. As such, the attestation () is resistant to PCle
bus attacks, including confidentiality, integrity, and replay
attacks. Similar to the attestation key, the secure embedding
of the session key guarantees that runtime data transactions
are also resistant to PCle bus attacks.

The above secure key distribution process and the as-
sumption of the secure key management service hosted by
the trusted hardware manufacturer, as mentioned in Sec-
tion 3, provide secure channels to faithfully distribute sym-
metric keys, Keygepice and Keygsress, between hardware com-
ponents. This approach provides an equivalent way to es-
tablish an agreed symmetric key as the key exchange phase

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

commonly used in asymmetric encryption protocols. The
usage of symmetric cryptographic algorithms simplifies the
SM logic’s design complexity, reduces hardware resource
consumption, and also shortens booting time in comparison
to asymmetric cryptographic algorithms.

4.7 Multiple Partial Reconfiguration Partitions

In Salus, we currently target architectures with only one
reconfiguration partition (RP). To extend to support multi-
ple RPs, each RP is required to integrate an SM logic such
that each RP can be separately programmed and attested.
A more optimized solution could consist of a single master
SM logic and several light-weight slave SM agents which are
integrated with each RP. We leave this to our future work.

5 Implementation

We provide Salus implementation details in this section. Sec-
tion 5.1 describes hardware design of the SM logic. Section 5.2
describes software stack of the user enclave application and
host enclave application. Salus is not bound to low-level im-
plementations and developers are free to choose different
techniques as long as fulfilling required functionalities.

5.1 Hardware Architecture

| Shell Accelerator

A
L > Sec Reg Chnl.
SM Controller | *
4_|J Transparent
On-Chip Mem Register Protection
—I—— Keyattest —|—> HMAC Engine
Keysession [T -
AES Engine

Ctrsession M

|<—Unsec Mem Chnl.—

SM Logic

Authentication Unit

SipHash Engine

DNA_PORTE2

Figure 5. FPGA architecture of Salus.

As shown in Figure 5, all the secure CL booting related
functionalities are wrapped within the SM logic module, and
the module is exposed as a portable AXI4-Lite IP to connect
to the shell. The SM logic exposes a AXI4-Lite interface
to the accelerator for secure register transactions. The SM
logic transparently guarantees confidentiality and integrity
of the accelerator’s register interface. All interfaces are the
same for the accelerator as original unsecure Faa$, as such
Salus puts no design limit on the accelerator. Similarly, Salus
also puts no design limit on the shell as long as the shell
can load an encrypted CL partial bitstream. The shell used
in existing Faa$S, such as Alibaba F3 [10] and AWS F1 [1],
already supports bitstream encryption. The SM logic exposes
an AXI4-Lite control interface and an AXI4 memory interface
to the accelerator same as current FaaS. The developer only

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

Zou et al.

Table 3. Protection of Secrets in Secure CL Booting Flow

l Steps ‘ Operation ‘ Target Secret ‘ Cl‘ 12 ‘ Flow of Target Secret ‘ Description
D@ | Remote Attest. H, LocKeyyypese | ¥ | ¥ | User Client — User Enclave | Securely transfer H and Lockey,, ey, -
® Local Attest. H, Lockeyyes | ¥ | ¥ | User Enclave — SM Enclave | Securely transfer H and Lockey,, e, -
@ Remote Attest. KeYgevice v | v | Manufacturer — SM Enclave | Securely transfer Keygepice-
@ Bit. Verification Bitstream - | v | SM Enclave Fetched bitstream is verified with H.
®@ Bit. Manipulation | Keygsrest v | - | SM Enclave Keyattest is securely injected to Lockey,, o,
@ Bit. Encryption Keyattest v | - | SM Enclave Keyarrest 1s securely encrypted by Keygeyice-
®® | CL Loading Keyarrest v/ | - | SMEnclave — SM Logic Keyarresr is securely transferred to CL.
©) CL Attestation Keyattest - | v/ | SMEnclave — SM Logic Keyaztest is verified.

! Confidentiality ? Integrity

needs to integrate the SM logic by connecting the accelerator
to the reserved interfaces.

5.1.1 Secure Manager Logic. As shown in Figure 5, all
secrets, including Keyartest, KeYsession, and Ctrsession, are
stored in an isolated on-chip block memory (BRAM). The
memory interface is not exposed outside the SM logic, such
that a shell could not steal the secrets. The BRAM initial val-
ues are changed during bitstream manipulation. The FPGA
ID DeviceDNA is retrieved using a DNA_PORTE2 IP [12].
MAC is calculated by a SipHash engine, a light-weight add-
rotate-xor based pseudorandom function generating a short
64-bit MAC. SipHash guarantees that an attacker knowing
a message x and MAC SipHash(x, k) but not key k could
not derive any message y # x with the same MAC. In Salus,
Keyarrest and Keysesseion are not accessible by attackers, and
hence the SipHash-based MAC is secure.

5.1.2 Disabling ICAP Readback. To prevent potential
security risks, it is crucial for the manufacturer to disable
the readback capability of the existing ICAP. Otherwise, the
shell could snoop and reverse-engineer the CL, extract se-
crets from the CL, and counterfeit a valid authentication. On
existing FPGAs, this is an inevitable security weakness from
which all previous FPGA TEE works suffer [22, 31, 40, 42].
This disabling is the only feature we utilize but is not cur-
rently available on COTS FPGAs. However, it is feasible
for the manufacturer to release a new ICAP IP since it is
essentially an officially-encrypted piece of RTL code. Con-
sidering the potential demand in the cloud privacy market,
providing such a new IP would be advantageous for the
manufacturer. FPGA IDE (e.g., Vivado) version control can
be used such that only new IDE versions containing a new
manufacturer-released readback-disabled ICAP IP can be
used to develop the shell. This is more related to software
supply chain security and software life cycle management
and we will investigate this in our future work.

5.2 Software Stack

Salus designs two independent software stacks: one for the
user client and manufacturer server, and the other for user

10

Untrusted Cloud Instance

Trusted Server

User Client/Mft. Server

App./
Service

TEE Library [Net. Stack

Infra. Operating System

CPU & Hardware i
I

| DTrusted Module :-_-: Untrusted Module |

Figure 6. Salus software stack.

and SM applications, as Figure 6 shows. The two software
stacks result from different security assumptions and func-
tionality requirements. The user client and manufacturer
server assume a trusted environment and are only respon-
sible for transferring encrypted data to a verified enclave.
User and SM applications, on the contrary, target to cooper-
ate to securely boot a CL bitstream on an untrusted cloud
instance. Salus leverages gRPC remote procedure call (RPC)
library [11] for easy development and extension.

5.2.1 User Client and Manufacturer Server. The user
client and manufacturer server extend the trust boundary
from trusted parties to enclaves running on a cloud instance
through a standard CPU TEE remote attestation process, as
shown in) and (@ in Figure 3. During remote attestation,
the user/SM enclave generates an asymmetric key pair and
issues the user client/manufacturer server the public key and
its digest carried by an Intel SGX DCAP quote. Note that this
implementation is not mandatory, as developers are free to
switch to other TEE platforms and attestation mechanisms
or exchange the key differently, e.g., DHKE [29] [36].

After verifying the enclave, the user client/manufacturer
server encrypts and transfers sensitive data to the user ap-
plication/SM application, and the latter decrypts the data
within the user enclave/SM enclave. For the manufacturer
server, it encrypts Keygepice before transmission to avoid
key leakage ((@). For the user client, the data owner sends
metadata of the expected CL bitstream (H and Locgey,,,.,,)
to the user enclave (2)) and securely provides Keyg,;, to the

Salus: A Practical TEE for CPU-FPGA Heterogeneous Cloud Platforms

| User Client

Manufacturer Server |

A ﬂ\
é)H RA Report (®)| Enc(Keyqqsq) RA Report (@] Enc(Keygepice)

yuser Application| g

__________________ e e e e e e e e e e e e ===
¢ 3ai AppiaionSIK |

[Local Attestation Initiator |
Encrypt Hash H -
Enc(H)

| Local Attestation Responder |

> Get and Verify Bitstream
Bitstream Manipulation

[SalusEnclave SDK] Bitstream Encryption
1 Deploy Bitstream '
Enclave RA Je—@®—H CL Authentication]
L] Encrypt Key .10 l«—O—H Keygession]
Enc(Keysession) Ctrsession |
Enc(Ctrsession)
CPU w/ TEE

Figure 7. Detailed modules of user and SM applications.

user enclave following a successful remote attestation of the
entire heterogeneous platform (®).

5.2.2 Cloud Instance Applications. In a nutshell, the
user and SM applications cooperatively fulfill their respon-
sibilities through following steps: 1) performing local attes-
tation to bridge the user and SM domain; 2) verifying the
CL bitstream against the shared digest H to ensure the ex-
pected bitstream is loaded; 3) inserting Key,rest, KeYsessions
and Ctrgession using bitstream manipulation and encrypting
the bitstream to establish the foundation for CL bitstream
integrity; 4) deploying the encrypted bitstream; and 5) per-
forming CL attestation to finally extend the trust from the
host to the FPGA side. As Figure 7 shows, all secure booting
related modules are placed within the enclave while leaving
RPC modules outside for networking.

Local attestation. Using local attestation, the user en-
clave ensures the SM enclave is trustworthy and establishes
a secure communication channel to the verified SM enclave.
The two enclaves exchange a symmetric key using Elliptic-
Curve Diffie-Hellman (ECDH) [18].

Bitstream operation. To ensure CL bitstream integrity,
the SM application wraps bitstream verification, bitstream
manipulation, and bitstream encryption as an integral oper-
ation within the enclave. During deployment, the SM appli-
cation only switches out of the enclave for PCle accesses (5
), and continues CL attestation ((7)) within the enclave.

6 Experimental Evaluation
6.1 Experimental Setup

We conduct an evaluation of Salus prototype on a realistic
setting. We run both the user and SM applications on a phys-
ical machine, equipped with two SGX-enabled Intel Xeon
Ice Lake CPUs and 1TiB memory as well as a Xilinx Alveo
U200 FPGA board. We host the manufacturer server on an Al-
ibaba elastic compute service (ECS) instance (ecs.c7t.4xlarge),
equipped with 16 vCPUs and 32GiB memory. The user client

11

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

D Accelerator
Reconfigurable

Partition (CL) [SM Logic
.................... [JopMA
. Central
Interconnect
Static Area [pDRr-A
(Shell)
B pDR-B
B ppR-C

Figure 8. Floor planning of shell and CL on FPGA.

runs on a local laptop. We use an Alibaba hosted DCAP
server to verify Intel SGX attestation reports.

This setup simulates a real cloud scenario where a FaaS
platform, a manufacturer server, and a user client are de-
ployed in three different domains. In a real cloud usage, the
user client runs securely on the user side and connects to a
remote heterogeneous cloud instance which is hosted by a
CSP. The manufacturer server is securely deployed and main-
tained on the manufacturer’s side, as an independent secure
key distribution service remotely serving all the CSPs. Our
experiment setup accurately simulates remote connections
between the three entities.

Xilinx’s open-source RapidWright [13] offers a Java pack-
age for bitstream manipulation. We host it by Occlum [35],
a library OS running on an enclave. Since Xilinx does not
provide an open-source bitstream encryption tool, we imple-
ment an AES-GCM-256 routine within the enclave to encrypt
plaintext bitstreams to measure bitstream encryption time.
The encryption algorithm aligns with the one used in Vivado
according to an official document [17].

We develop a light-weight shell supporting bitstream en-
cryption. Figure 8 shows the floor planning of our design. All
logics are developed using Vivado 2022.1. To evaluate FPGA
TEE runtime performance, we customize five open-source
accelerators to operate on ciphertext user data, by adding
memory encryption/decryption logic and integrate with the
SM logic. Table 4 lists the benchmarking applications.

6.2 Resource Utilization

The resource utilization of various accelerators and the SM
logic are listed in Table 5. Despite different benchmark appli-
cations, the total available CL resource is fixed as it is only
determined by the area reserved for RP during floor planning
stage. In the implementation, we reserved one super logic
region as the RP, occupying approximately one-third of the
FPGA resources, only for prototyping purpose. The func-
tionality of the SM logic is general such that the resource
utilization of the SM logic is the same across all the bench-
marks. Among the available CL hardware resources, the SM
logic only consumes 8% LUTs, 4% Registers, and 13% BRAMs.

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

Zou et al.

Table 4. Benchmarking Applications

l Application [Description [Source [Added Memory Encryption
Conv Single convolution layer over a 3x3x256 kernel. | Xilinx SDAccel Example [14] | Input feature maps.
Affine Affine transformation on a 512X512 image. Xilinx SDAccel Example Input & output images.
Rendering Render 2D images from 3D models. Rosetta [43] Input & output images.
FaceDetect Viola Janes face detection [37]. Rosetta Input image.
NNSearch Nearest-neighbour linear search. Xilinx SDAccel Example Input targets and queries.

Table 5. Resource Utilization Breakdown of CL

| Logic \ LUT | Register | BRAM |

Total CL Resource | 355040 710080 696

Conv 19735 (6%) 20169 (3%) | 329 (47%)
Affine 32014 (9%) | 36382 (5%) | 543 (78%)
Rendering 29132 (8%) | 35731 (5%) | 142 (20%)
FaceDetect 31956 (9%) 36201 (5%) | 62 (9%)
NNSearch 49069 (14%) | 42568 (6%) | 122 (18%)
SM Logic 27667 (8%) | 29631(4%) | 88(13%)

The lightweight SM logic enables easy code inspection and
portability for release. As shown in Figure 8, the SM logic can
be freely integrated by the developer such that the location
of the SM logic and consequently Lockey,,,.,, are dynamic
across different compiled CL netlists.

6.3 Booting Time

Figure 9 shows that booting and attesting a CL takes extra
18.8 seconds on top of 40+ seconds booting time of a CSP VM
instance [6, 16]. As the booting time is a one-shot overhead,
we consider this booting time reasonable. As a comparison,
the booting process in ShEF [42] consumes 5.1 seconds with-
out implementing and measuring network handshaking.

The bitstream manipulation during the CL bitstream de-
ployment consumes most of the total booting time (73.2%).
Directly wrapping the RapidWright inside an enclave with-
out tailoring results in an inefficient implementation. The
bitstream verification and encryption takes 725 milliseconds
in total. It takes 1709 milliseconds for the manufacturer to
remotely attest and distribute a key to the SM enclave. The
remote attestation of the user enclave takes 2568 millisec-
onds. The user client running on a laptop connects to the
DCAP server through a wide-area network, which explains
why it takes longer than on the manufacturer server, which
connects through an intra-cloud network. Requiring no net-
work communication, local and CL attestations are negligible
(836 microseconds and 1.3 milliseconds, respectively).

We need to note that the time of bitstream verification,
manipulation, and encryption, is the same for all applications.
More specifically, the time of bitstream operations is only
dependent on the size of the partial CL bitstream. For Xilinx
devices and toolsets, a partial CL bitstream’s size is only

12

EEE SM Enclv. Quote Gen. [EZEE Bitstream Manipulation
EEN SM Enclv. Quote Verif. B User Enclv. Quote Gen.
EEZ Bitstream Verif. & Enc. B User Enclv. Quote Verif.

Local Attestation |

Device Key Dist. EENTT]
CL Deployment rrZzzAlzZz=1
CL Authentication |
User RA " =73
0 1710 " 16267 18835
Execution Time (ms)
Figure 9. Execution time of CL booting.
g 15
g B SGX |: Salus
=
Q
e 1.0
b o
= § o
LE 05 Q2
£
5 0.0 «
Z, a%\“ & o“ %@‘ e\°°
** = @"

Figure 10. Performance of realistic workloads running on a
securely booted FPGA TEE.

determined by the area reserved for the CL during floor plan-
ning, while independent of accelerator logic implemented
inside the reconfigurable area [3]. In our experiments, we
reserve the same region for all CL applications such that the
bitstream operation time is the same.

6.4 Performance of Realistic Workloads

We run five realistic workloads on an isolated FPGA TEE to
compare performance benefits to running on a CPU TEE. We
add an AES-CTR streaming encryption/decryption logic at
the memory interface. Depending on the application, we se-
lectively encrypt memory transactions. For machine learning
tasks, Conv, FaceDetect, and NNSearch, we only encrypt
incoming traffic while leaving training weights and outputs
in plaintext. For Affine and Rendering, we encrypt both
inbound and outbound traffic. Baseline implementations run
solely on an SGX-enabled CPU.

Salus: A Practical TEE for CPU-FPGA Heterogeneous Cloud Platforms

Table 6. Slowdown of CPU TEE And FPGA TEE

l Implementation [Conv [Rendering [FaceDetect ‘
CPU w/o TEE 3038.52 ms 1.24 ms 26.69 ms
CPU w/ TEE 3059.90 ms 5.43 ms 93.38 ms
CPU Slowdown 1.01 X 4.38 X 3.50 X
FPGA w/o TEE 1522.09 ms 4.40 ms' | 21.50 ms!
FPGA w/ TEE 1522.20 ms 4.63 ms 22.05 ms
FPGA Slowdown 1.00 X 1.05 X 1.03 x

I Measured and reported on Xilinx U200 FPGAs by Rosetta [43].

As shown in Figure 10, Salus achieves a speedup of 1.17
to 15.64 times over SGX. To further analyze the root cause
of the speedup, we compare performance of the plaintext
non-SGX CPU implementation, the ciphertext SGX CPU im-
plementation with added memory encryption/decryption,
the plaintext non-TEE FPGA implementation, and the ci-
phertext FPGA TEE implementation with added memory
encryption/decryption, as shown in Table 6. The overhead
of the FPGA TEE is negligible when comparing the accel-
erator performance running within and outside the FPGA
TEE. Tested on Conv, NNSearch, and FaceDetect, the TEE-
protected accelerator runs only up to 1.01 times slower than
a non-protected accelerator. This negligible overhead results
from the high-throughput memory traffic encryption within
the accelerator. In addition, the accelerator logic stores inter-
mediate data on internal on-chip block memories without
writing to the external memory, further reducing memory
traffic and intermediate memory encryption overhead. In
contrast, the CPU TEE overhead is as high as 4.38 times. The
data movement between trusted and untrusted contexts is
encrypted by a general OpenSSL-based encryption. Addi-
tionally, all memory accesses within the enclave program ,
such as malloc, are forced to be transparently encrypted by
hardware, resulting in extra overhead.

The requirement for the memory traffic encryption gives
a larger design space during the accelerator design and pos-
sibly higher speedup over CPU implementations. For an ap-
plication where the plaintext FPGA implementation already
achieves some speedup over the plaintext CPU implementa-
tion, the performance gap might be enlarged when running
on TEEs and operating on encrypted sensitive data justifying
the significance of an FPGA TEE.

7 Related Works

FPGA TEE. In addition to SGX-FPGA [40], ShEF [42], Am-
bassy [22], and MeetGo [31], which are discussed in Sec-
tion 3.2, there are also other TEE works targeting acceler-
ators. HETEE [44] implements a centralized security con-
troller on an FPGA placed in a tamper-resistant box, targeting
a rack-level isolation, which is orthogonal to the board-level
isolation studied in this work. CRONUS [24] introduces fault
isolation between spatially shared accelerators, which is not

13

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

considered in this work, as COTS FaaS does not host multi-
ple accelerators simultaneously. GuardNN [20] targets ML
accelerators instead of a general cloud infrastructure.

GPU TEE. Graviton [39] designs a light-weight peripheral
hardware added to a GPU and a runtime running on a host
TEE to isolate sensitive kernels from other code and device
drivers. LITE [41] introduces a light-weight customizable
software encryption scheme. HIX [23] refactors the GPU
driver code to run within a host TEE to avoid modifications
to the existing GPU architecture, while requiring a change
on the CPU-GPU I/O interconnect. Due to the fundamental
architectural difference, these approaches cannot be directly
applied to FPGAs.

PCle 6.0 specification introduces TEE Device Interface
Security Protocol (TDISP) [15], a new architecture to se-
cure I/O virtualization. The standardized interface enables
a secure key exchange between a VM and a PCle device.
However, TDISP does not handle a potentially malware CSP-
maintained shell. The key exchange used in Salus can be
standardized by TDISP, and we leave this to our future work.

8 Conclusion

As the volume of sensitive data increases, a trusted and high-
performance CPU-FPGA heterogeneous cloud infrastructure
is highly demanded. Salus addresses this need by building a
TEE on off-the-shelf cloud FPGA devices. Targeting hetero-
geneous architectures, Salus assumes a TEE-enabled CPU
on the host and extends the CPU TEE boundary from the
host to the accelerator.

Acknowledgments

We thank our shepherd, Tamara Lehman, and the anonymous
reviewers for their insightful feedback that much improved
this paper. We also appreciate AMD for donating an Alveo
U200 accelerator card and the Alibaba Cloud ECS team for
their technical support.

References

[1] Amazon ec2 f1 instances.
types/f1/, 2024.

[2] Amd adaptive computing documentation portal. https:
//docs.xilinx.com/r/en-US/ug909-vivado-partial-reconfiguration,
2024.

[3] Amd partial reconfiguration.
QIPIMmOyVRKL~greqwY2VWQ, 2024.

[4] Attestation services for intel® software guard extensions. https:
//www.intel.com/content/www/us/en/developer/tools/software-
guard-extensions/attestation-services.html, 2024.

[5] Azure confidential computing | microsoft learn. https:
//learn.microsoft.com/en-us/azure/confidential-computing/, 2024.

[6] Comparing the speed of vm creation and ssh access of cloud
providers. https://blog.cloud66.com/part-2-comparing-the-speed-of-
vm-creation-and-ssh-access-on-aws-digitalocean-linode-vexxhost-
google-cloud-rackspace-packet-cloud-a-and-microsoft-azure, 2024.

[7] Confidential computing capabilities. https://www.alibabacloud.com/
help/en/ecs/user-guide/confidential-computing-capabilities/, 2024.

https://aws.amazon.com/ec2/instance-

https://docs.amd.com/v/u/

https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://docs.xilinx.com/r/en-US/ug909-vivado-partial-reconfiguration
https://docs.xilinx.com/r/en-US/ug909-vivado-partial-reconfiguration
https://docs.amd.com/v/u/QIPlm0yVRKL~grcqwY2VWQ
https://docs.amd.com/v/u/QIPlm0yVRKL~grcqwY2VWQ
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/attestation-services.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/attestation-services.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/attestation-services.html
https://learn.microsoft.com/en-us/azure/confidential-computing/
https://learn.microsoft.com/en-us/azure/confidential-computing/
https://blog.cloud66.com/part-2-comparing-the-speed-of-vm-creation-and-ssh-access-on-aws-digitalocean-linode-vexxhost-google-cloud-rackspace-packet-cloud-a-and-microsoft-azure
https://blog.cloud66.com/part-2-comparing-the-speed-of-vm-creation-and-ssh-access-on-aws-digitalocean-linode-vexxhost-google-cloud-rackspace-packet-cloud-a-and-microsoft-azure
https://blog.cloud66.com/part-2-comparing-the-speed-of-vm-creation-and-ssh-access-on-aws-digitalocean-linode-vexxhost-google-cloud-rackspace-packet-cloud-a-and-microsoft-azure
https://www.alibabacloud.com/help/en/ecs/user-guide/confidential-computing-capabilities/
https://www.alibabacloud.com/help/en/ecs/user-guide/confidential-computing-capabilities/

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

[8] Deploy ml models to fpgas - azure machine learning | microsoft learn.

[15

[16

(17

[18

[19

[20

[21

[22

[23

[24

[25

[26

—

—

[t

]

—

—

[t

]

[t

]

—

[t}

=

=

—

https://learn.microsoft.com/en-us/azure/machine-learning/v1/how-
to-deploy-fpga-web-service?view=azureml-api- 1#fpga-support-in-
azure, 2024.

familykey « vitis unified software platform documentation: Embedded
software development (ug1400) « reader « amd adaptive computing
documentation portal. https://docs.xilinx.com/r/en-US/ug1400-vitis-
embedded/familykey, 2024.

Fpga as a service. https://www.alibabacloud.com/help/en/fpga-based-
ecs-instance, 2024.

grpe. https://grpc.io/, 2024.

Introduction - ultrascale architecture libraries guide (ug974) » reader «
documentation portal. https://docs.xilinx.com/r/en-US/ug974-vivado-
ultrascale-libraries, 2024.

Rapidwright documentation — rapidwright 2022.2.0-beta documenta-
tion. https://www.rapidwright.io/docs/index.html, 2024.
Sdaccel_examples/getting_started/clk_freq/large_loop_ocl

at master xilinx/sdaccel_examples. https://github.com/
Xilinx/SDAccel_Examples/tree/master/getting_started/clk_freq/
large_loop_ocl, 2024.

Tee device interface security protocol (tdisp) | pci-sig. https:/
pcisig.com/tee-device-interface-security-protocol-tdisp, 2024.
Understanding and profiling gce cold-boot time | by colt
mcanlis | google cloud - community | medium. https:
//medium.com/google-cloud/understanding-and-profiling-gce-
cold-boot-time-32c209fe86ab, 2024.

Using encryption and authentication to secure an ultrascale/ultrascale+
fpga bitstream application note. https://www.xilinx.com/content/
dam/xilinx/support/documents/application_notes/xapp1267-encryp-
efuse-program.pdf, 2024.

Elaine Barker, Lily Chen, Sharon Keller, Allen Roginsky, Apostol
Vassilev, and Richard Davis. Recommendation for pair-wise key-
establishment schemes using discrete logarithm cryptography. Tech-
nical report, National Institute of Standards and Technology, 2017.
Victor Costan and Srinivas Devadas. Intel sgx explained. Cryptology
ePrint Archive, 2016.

Weizhe Hua, Muhammad Umar, Zhiru Zhang, and G Edward Suh.
Guardnn: Secure accelerator architecture for privacy-preserving deep
learning. In Proceedings of the 59th ACM/IEEE Design Automation
Conference, pages 349-354, 2022.

Tyler Hunt, Zhipeng Jia, Vance Miller, Ariel Szekely, Yige Hu, Christo-
pher J Rossbach, and Emmett Witchel. Telekine: Secure computing
with cloud {GPUs}. In 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20), pages 817-833, 2020.

Dongil Hwang, Sanzhar Yeleuov, Jiwon Seo, Minu Chung, Hyungon
Moon, and Yunheung Paek. Ambassy: A runtime framework to dele-
gate trusted applications in an arm/fpga hybrid system. IEEE Transac-
tions on Mobile Computing, 2021.

Insu Jang, Adrian Tang, Taehoon Kim, Simha Sethumadhavan, and
Jaehyuk Huh. Heterogeneous isolated execution for commodity gpus.
In Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
pages 455-468, 2019.

Jianyu Jiang, Ji Qi, Tianxiang Shen, Xusheng Chen, Shixiong Zhao,
Sen Wang, Li Chen, Gong Zhang, Xiapu Luo, and Heming Cui. Cronus:
Fault-isolated, secure and high-performance heterogeneous computing
for trusted execution environment. In 2022 55th IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), pages 124-143. IEEE,
2022.

Auguste Kerckhoffs. La cryptographie militaire, ou, Des chiffres usités
en temps de guerre: avec un nouveau procédé de déchiffrement applicable
aux systémes a double clef. Librairie militaire de L. Baudoin, 1883.
Michat Kucab, Piotr Boryto, and Piotr Chotda. Hardware-assisted static

and runtime attestation for cloud deployments. IEEE Transactions on
Cloud Computing, 2023.

14

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Zou et al.

Chris Lavin and Alireza Kaviani. Rapidwright: Enabling custom crafted
implementations for fpgas. In 2018 IEEE 26th Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM),
pages 133-140. IEEE, 2018.

Kristiyan Manev, Joseph Powell, Kaspar Matas, and Dirk Koch. byte-
man: A bitstream manipulation framework. In 2022 International Con-
ference on Field-Programmable Technology (ICFPT), pages 1-9. IEEE,
2022.

Ralph C Merkle. Secure communications over insecure channels.
Communications of the ACM, 21(4):294-299, 1978.

Mathias Morbitzer, Benedikt Kopf, and Philipp Zieris. Guarantee: Intro-
ducing control-flow attestation for trusted execution environments. In
2023 IEEE 16th International Conference on Cloud Computing (CLOUD),
pages 547-553. IEEE, 2023.

Hyunyoung Oh, Kevin Nam, Seongil Jeon, Yeongpil Cho, and Yun-
heung Paek. Meetgo: A trusted execution environment for remote
applications on fpga. IEEE Access, 9:51313-51324, 2021.

Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silberstein,
and Christof Fetzer. Varys: Protecting {SGX} enclaves from practical
{Side-Channel} attacks. In 2018 Usenix Annual Technical Conference
(USENIX ATC 18), pages 227-240, 2018.

Rakin Muhammad Shadab, Yu Zou, Sanjay Gandham, Amro Awad,
and Mingjie Lin. Hmt: A hardware-centric hybrid bonsai merkle tree
algorithm for high-performance authentication. ACM Transactions on
Embedded Computing Systems, 22(4):1-28, 2023.

Rakin Muhammad Shadab, Yu Zou, Sanjay Gandham, and Mingjie
Lin. Omt: A run-time adaptive architectural framework for bonsai
merkle tree-based secure authentication with embedded heteroge-
neous memory. In 2023 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), pages 191-202. IEEE, 2023.
Youren Shen, Hongliang Tian, Yu Chen, Kang Chen, Runji Wang,
Yi Xu, Yubin Xia, and Shoumeng Yan. Occlum: Secure and efficient
multitasking inside a single enclave of intel sgx. In Proceedings of
the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 955-970, 2020.
Arjun Singhvi, Aditya Akella, Dan Gibson, Thomas F Wenisch, Monica
Wong-Chan, Sean Clark, Milo MK Martin, Moray McLaren, Prashant
Chandra, Rob Cauble, et al. 1rma: Re-envisioning remote memory
access for multi-tenant datacenters. In Proceedings of the Annual
conference of the ACM Special Interest Group on Data Communication on
the applications, technologies, architectures, and protocols for computer
communication, pages 708-721, 2020.

Nitish Srivastava, Steve Dai, Rajit Manohar, and Zhiru Zhang. Accel-
erating face detection on programmable soc using c-based synthesis.
In 25" ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, Feb 2017.

Flavio Toffalini, Eleonora Losiouk, Andrea Biondo, Jianying Zhou,
and Mauro Conti. {ScaRR}: Scalable runtime remote attestation for
complex systems. In 22nd International Symposium on Research in
Attacks, Intrusions and Defenses (RAID 2019), pages 121-134, 2019.
Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. Graviton: Trusted
execution environments on gpus. In OSDI, pages 681-696, 2018.

Ke Xia, Yukui Luo, Xiaolin Xu, and Sheng Wei. Sgx-fpga: Trusted
execution environment for cpu-fpga heterogeneous architecture. In
2021 58th ACM/IEEE Design Automation Conference (DAC), pages 301—
306. IEEE, 2021.

Ardhi Wiratama Baskara Yudha, Jake Meyer, Shougang Yuan, Huiyang
Zhou, and Yan Solihin. Lite: A low-cost practical inter-operable gpu
tee. In Proceedings of the 36th ACM International Conference on Super-
computing, pages 1-13, 2022.

Mark Zhao, Mingyu Gao, and Christos Kozyrakis. Shef: Shielded
enclaves for cloud fpgas. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, pages 1070-1085, 2022.

https://learn.microsoft.com/en-us/azure/machine-learning/v1/how-to-deploy-fpga-web-service?view=azureml-api-1#fpga-support-in-azure
https://learn.microsoft.com/en-us/azure/machine-learning/v1/how-to-deploy-fpga-web-service?view=azureml-api-1#fpga-support-in-azure
https://learn.microsoft.com/en-us/azure/machine-learning/v1/how-to-deploy-fpga-web-service?view=azureml-api-1#fpga-support-in-azure
https://docs.xilinx.com/r/en-US/ug1400-vitis-embedded/familykey
https://docs.xilinx.com/r/en-US/ug1400-vitis-embedded/familykey
https://www.alibabacloud.com/help/en/fpga-based-ecs-instance
https://www.alibabacloud.com/help/en/fpga-based-ecs-instance
https://grpc.io/
https://docs.xilinx.com/r/en-US/ug974-vivado-ultrascale-libraries
https://docs.xilinx.com/r/en-US/ug974-vivado-ultrascale-libraries
https://www.rapidwright.io/docs/index.html
https://github.com/Xilinx/SDAccel_Examples/tree/master/getting_started/clk_freq/large_loop_ocl
https://github.com/Xilinx/SDAccel_Examples/tree/master/getting_started/clk_freq/large_loop_ocl
https://github.com/Xilinx/SDAccel_Examples/tree/master/getting_started/clk_freq/large_loop_ocl
https://pcisig.com/tee-device-interface-security-protocol-tdisp
https://pcisig.com/tee-device-interface-security-protocol-tdisp
https://medium.com/google-cloud/understanding-and-profiling-gce-cold-boot-time-32c209fe86ab
https://medium.com/google-cloud/understanding-and-profiling-gce-cold-boot-time-32c209fe86ab
https://medium.com/google-cloud/understanding-and-profiling-gce-cold-boot-time-32c209fe86ab
https://www.xilinx.com/content/dam/xilinx/support/documents/application_notes/xapp1267-encryp-efuse-program.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/application_notes/xapp1267-encryp-efuse-program.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/application_notes/xapp1267-encryp-efuse-program.pdf

Salus: A Practical TEE for CPU-FPGA Heterogeneous Cloud Platforms

[43] Yuan Zhou, Udit Gupta, Steve Dai, Ritchie Zhao, Nitish Srivastava,

Hanchen Jin, Joseph Featherston, Yi-Hsiang Lai, Gai Liu, Gustavo An-
garita Velasquez, Wenping Wang, and Zhiru Zhang. Rosetta: A Realis-
tic High-Level Synthesis Benchmark Suite for Software-Programmable
FPGAs. Int’l Symp. on Field-Programmable Gate Arrays (FPGA), Feb
2018.

[44] Jianping Zhu, Rui Hou, XiaoFeng Wang, Wenhao Wang, Jiangfeng Cao,

Boyan Zhao, Zhongpu Wang, Yuhui Zhang, Jiameng Ying, Lixin Zhang,
et al. Enabling rack-scale confidential computing using heterogeneous

15

[45]

[46]

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

trusted execution environment. In 2020 IEEE Symposium on Security
and Privacy (SP), pages 1450-1465. IEEE, 2020.

Yu Zou, Amro Awad, and Mingjie Lin. Hermes: Hardware-efficient
speculative dataflow architecture for bonsai merkle tree-based memory
authentication. In 2021 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), pages 203-213. IEEE, 2021.

Yu Zou and Mingjie Lin. Fast: A frequency-aware skewed merkle tree
for fpga-secured embedded systems. In 2019 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), pages 326-331. IEEE, 2019.

	Abstract
	1 Introduction
	2 Background
	2.1 Trusted Execution Environment
	2.2 FPGA-as-a-Service
	2.3 Bitstream Encryption And Manipulation

	3 Threat Model And Motivation
	3.1 Threat Model
	3.2 Motivation

	4 System Design
	4.1 System Overview
	4.2 Dynamic RoT Injection And Secure CL Booting
	4.3 Custom Logic Attestation
	4.4 Cascaded Attestation
	4.5 User Enclave Interface
	4.6 Security Analysis
	4.7 Multiple Partial Reconfiguration Partitions

	5 Implementation
	5.1 Hardware Architecture
	5.2 Software Stack

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Resource Utilization
	6.3 Booting Time
	6.4 Performance of Realistic Workloads

	7 Related Works
	8 Conclusion
	Acknowledgments
	References

